
der 1	Scientific Measurement	Name:
	Notes	Period:

Measuring Mass Using a Triple Beam Balance

Parts of the triple beam balance:

A close-up look at the beams:

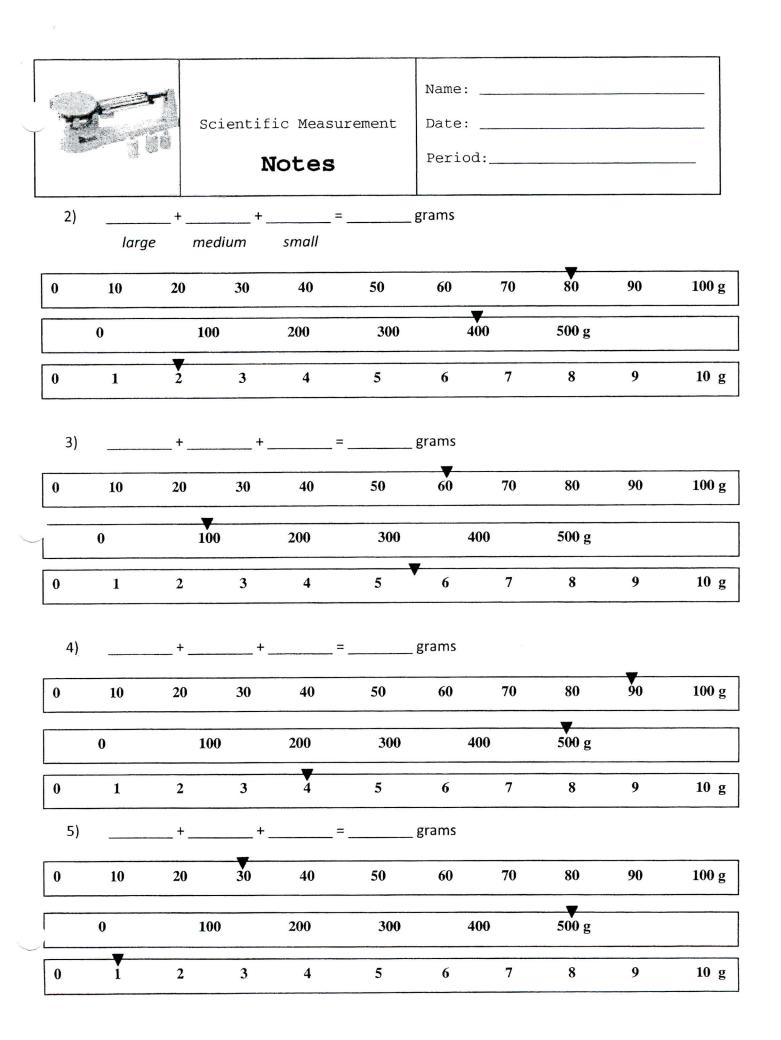
100 g	90	80	70	60	50	40	30	20	10	0
	500 g		400	300	2	200		100	0	
10 g	9	8	7	6	5	4	3	2	1	0
-	9	8		6) is				2		

The scale of the middle beam is ______ grams.

The scale of the front beam (the bottom beam in the diagram) is ______grams.

The largest mass that can be measured with the triple beam balance is ______ grams (the ______ of all three beams).

der.	Scientific Measurement	Name:
	Notes	Period:


Steps for Using the Triple Beam Balance

- 1. Make sure the ______ is at the "zero" mark.
- 2. The balance must be ______ before you are able to get an accurate measurement. To do this, turn the ______ until the white line on the pointer lines up EXACTLY with the zero line.
- 3. Place the object you wish to measure on the _____.
- 4. Move the rider on the middle beam (the ______ rider) to the right one notch at a time. When the pointer dips below the zero line, move the rider back one notch to the left.
- 5. Move the rider on the back beam (the ______ rider) to the right one notch at a time. When the pointer dips below the zero line, move the rider back one notch to the left.
- 6. Slide the rider on the front beam (the ______ rider) to the right. Slide this rider until the pointer lines up EXACTLY with the zero line.
- 7. Add the values shown by the riders on each beam to obtain the mass of the object. Make sure to include units! (When using a triple beam balance, the units will always be ______.)

Reading the Beams

Read the riders on the balances shown below to find the mass in each situation.

1)		+	+.	=	{	grams				
	large	me	dium	small						
					.					
0	10	20	30	40	50	60	70	80	90	100 g
	0	10	0	200	300	4	00	500 g		

